Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xin-Hua Li

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail: lixinhua01@126.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
Disorder in main residue
R factor $=0.029$
$w R$ factor $=0.060$
Data-to-parameter ratio $=10.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[hexaaquatris (μ_{3}-3-carboxypyrazole-5-carboxylato)(3-carboxypyrazole-5-carboxyl-ato- $\kappa O)\left(\mu_{2}\right.$-pyrazole-3,5-dicarboxylato)dicerium(III)]

In the title compound, $\left[\mathrm{Ce}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{4}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{n}$, each Ce atom is nine-coordinated by three water molecules, four 3-carboxypyrazole-5-carboxylate monoanions (two pairs of symmetry-related anions), and a pyrazole-3,5dicarboxylate dianion. Two symmetry-related Ce atoms are bridged by a pyrazole-3,5-dicarboxylate dianion, which lies across a twofold rotation axis. There are two independent 3-carboxypyrazole-5-carboxylate monoanions which differ in their coordination modes; one is monodentate and the other is tetradentate. The Ce atoms are bridged by both pyrazole-3,5dicarboxylate dianions and 3-carboxypyrazole-5-carboxylate monoanions, generating a three-dimensional network structure.

Comment

3,5-Pyrazoledicarboxylic acid ($\mathrm{H}_{3} \mathrm{pdc}$), is a multifunctional ligand; it has multiple coordination sites that allow structures of higher dimensions and it also has abstractable protons that allow various acidity-dependent coordination modes (Pan et al., 2000). A variety of $\mathrm{H}_{3} \mathrm{pdc}$ coordination compounds have been synthesized and reported in the literature (Pan, Ching et al., 2001; Pan, Frydel et al., 2001). Much of the work has been focused on coordination polymers containing transition metal and post-transition metal elements. Rare-earth metal compounds have seldom been investigated. Owing to their high coordination number and special magnetic (Retailleau et al., 2004) and fluorescence properties, the lanthanide series is likely to provide new materials (Yu et al., 2000) that possess specific properties and desired features. In this paper, we

Figure 1
A segment of the polymeric structure of (I), showing 50% probability displacement ellipsoids. [Symmetry codes: (') $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z ;\left({ }^{\prime \prime}\right) \frac{1}{2}+x, \frac{1}{2}$ $-y, \frac{1}{2}+z ;\left({ }^{\prime \prime \prime}\right)-x, y, \frac{1}{2}-z$.]

Received 4 October 2005 Accepted 12 October 2005 Online 19 October 2005
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved
report the synthesis and structure of a new cerium coordination polymer, $\left[\mathrm{Ce}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{n}$, (I).

In (I), each Ce ion is nine-coordinated, with bonds to four $\mathrm{H}_{2} \mathrm{pdc}^{-}$anions, an Hpdc^{2-} dianion and three water molecules. The Hpdc^{2-} dianion is coordinated in bidentate fashion, with one O atom of each carboxylate group bound to a Ce and thereby bridging two symmetry-related Ce ions. There are two independent pyrazole-3,5-dicarboxylate anions which differ in their coordination modes; one binds in monodentate mode and the other in tetradentate mode. Therefore, mono- and tetradentate coordination modes of $\mathrm{H}_{2} \mathrm{pdc}^{-}$anions and the bidentate mode of the Hpdc^{2-} dianion are included in the title compound, with multi-bridging modes of the carboxylate group (Fig. 1).

From Table 1 we can see that the $\mathrm{Ce}-\mathrm{O} 5-\mathrm{C} 9$ angle is nearly linear (ca 165°), which is unusual. It should be noted that atom H 5 N of the Hpdc^{2-} dianion is necessarily disordered over two half-occupied positions, as this ligand lies across a twofold axis. In addition, the displacement parameter for N 5 is the largest of any N atom, consistent with slightly different positions when it is $\mathrm{C}-\mathrm{NH}$ versus $\mathrm{C}=\mathrm{N}$. There are also two potential (weak) hydrogen-bonding contacts for N5, one at a distance of 3.180 (2) \AA to O 5 and the other at a distance of 3.258 (2) \AA to O13. The latter is a nearly linear interaction.

There are many weak interactions in this compound, such as $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). Ce ions, water molecules and H_{3} pdc ligands interact through coordination bonds and weak interactions, generating a threedimensional framework.

Experimental

The title compound was synthesized by adding an aqueous (10 ml) solution of ammonium ceric nitrate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}(1.0 \mathrm{~g}, 2 \mathrm{mmol})$,
to a methanol and ethanol mixed solution (10 ml) of pyrazole-3,5dicarboxylic acid ($0.4 \mathrm{~g}, 2 \mathrm{mmol}$) and $2,2^{\prime}$-dithiosalicylic acid (0.6 g , $2 \mathrm{mmol})$ at room temperature. The reaction mixture was filtered; colorless prism-shaped crystals separated from the solution after about three months. The transparent prismatic crystals were collected, washed with distilled water and dried in air.

Crystal data

$\left[\mathrm{Ce}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\right.$ -
$\left.\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]$
$M_{r}=1162.80$
Monoclinic, $C 2 / c$
$a=19.2347$ (16) \AA
$b=13.2563$ (11) \AA
$c=16.7559$ (15) \AA
$\beta=123.909(1)^{\circ}$
$V=3545.8(5) \AA^{3}$
$Z=4$

Data collection

Bruker APEX area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Bruker, 2002)
$\quad T_{\min }=0.80, T_{\max }=0.82$
9143 measured reflections

> 3147 independent reflections
> 2864 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.028$
> $\theta_{\max }=25.1^{\circ}$
> $h=-22 \rightarrow 21$
> $k=-15 \rightarrow 14$
> $l=-19 \rightarrow 19$

$$
D_{x}=2.178 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 3147 reflections
$\theta=2.0-25.1^{\circ}$
$\mu=2.66 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, colorless
$0.15 \times 0.07 \times 0.07 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.060$
$S=1.05$
3147 reflections
304 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0194 P)^{2}\right. \\
& \quad+12.7824 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.00 \\
& \Delta \rho_{\max }=0.74 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Ce} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.391(2)$	$\mathrm{Ce} 1-\mathrm{O} 13$	$2.560(3)$
$\mathrm{Ce} 1-\mathrm{O} 5$	$2.438(3)$	$\mathrm{Ce} 1-\mathrm{O} 9$	$2.641(3)$
$\mathrm{Ce} 1-\mathrm{O} 12$	$2.519(3)$	$\mathrm{Ce} 1-\mathrm{N} 1$	$2.642(3)$
$\mathrm{Ce} 1-\mathrm{O} 11$	$2.550(3)$	$\mathrm{Ce} 1-\mathrm{O} 3^{\mathrm{ii}}$	$2.661(3)$
$\mathrm{Ce} 1-\mathrm{O} 1$	$2.554(2)$		
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 5$	$75.96(9)$	$\mathrm{O} 13-\mathrm{Ce} 1-\mathrm{O} 9$	$64.50(9)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 12$	$82.05(12)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{N} 1$	$144.09(10)$
$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{O} 12$	$73.43(12)$	$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{N} 1$	$71.64(9)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 11$	$74.28(10)$	$\mathrm{O} 12-\mathrm{Ce} 1-\mathrm{N} 1$	$74.32(11)$
$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{O} 11$	$131.65(11)$	$\mathrm{O} 11-\mathrm{Ce} 1-\mathrm{N} 1$	$117.54(10)$
$\mathrm{O} 12-\mathrm{Ce} 1-\mathrm{O} 11$	$65.45(11)$	$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{N} 1$	$61.59(8)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 1$	$145.08(9)$	$\mathrm{O} 13-\mathrm{Ce} 1-\mathrm{N} 1$	$115.30(10)$
$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{O} 1$	$132.87(9)$	$\mathrm{O} 9-\mathrm{Ce} 1-\mathrm{N} 1$	$72.68(9)$
$\mathrm{O} 12-\mathrm{Ce} 1-\mathrm{O} 1$	$88.24(11)$	$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 3^{\mathrm{ii}}$	$85.69(9)$
$\mathrm{O} 11-\mathrm{Ce} 1-\mathrm{O} 1$	$71.18(9)$	$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{O} 3^{\mathrm{ii}}$	$148.06(10)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 13$	$69.02(10)$	$\mathrm{O} 12-\mathrm{Ce} 1-\mathrm{O} 3^{\mathrm{ii}}$	$130.13(10)$
$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{O} 13$	$74.54(11)$	$\mathrm{O} 11-\mathrm{Ce} 1-\mathrm{O} 3^{\mathrm{ii}}$	$64.69(10)$
$\mathrm{O} 12-\mathrm{Ce} 1-\mathrm{O} 13$	$141.00(12)$	$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 3^{i i}$	$75.20(8)$
$\mathrm{O} 11-\mathrm{Ce} 1-\mathrm{O} 13$	$126.26(10)$	$\mathrm{O} 13-\mathrm{Ce} 1-\mathrm{O} 3^{\mathrm{ii}}$	$74.55(9)$
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 13$	$130.29(9)$	$\mathrm{O} 9-\mathrm{Ce} 1-\mathrm{O} 3^{\mathrm{ii}}$	$69.05(8)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 9$	$131.31(9)$	$\mathrm{N} 1-\mathrm{Ce} 1-\mathrm{O} 3^{\mathrm{ii}}$	$130.22(9)$
$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{O} 9$	$104.10(10)$	$\mathrm{C} 4-\mathrm{O} 1-\mathrm{Ce} 1$	$124.0(2)$
$\mathrm{O} 12-\mathrm{Ce} 1-\mathrm{O} 9$	$145.77(11)$	$\mathrm{C} 4-\mathrm{O} 2-\mathrm{Ce} 1^{\mathrm{iii}}$	$158.9(3)$
$\mathrm{O} 11-\mathrm{Ce} 1-\mathrm{O} 9$	$124.17(9)$	$\mathrm{C} 5-\mathrm{O} 3-\mathrm{Ce} 1^{\mathrm{iv}}$	$133.5(2)$
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 9$	$68.22(9)$	$\mathrm{C} 9-\mathrm{O} 5-\mathrm{Ce} 1$	$164.4(3)$

Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $-x+\frac{1}{2}, y-\frac{1}{2}$,
$-z+\frac{1}{2}$; (iv) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 9^{\text {iv }}$	0.82	1.70	2.515 (4)	172
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 10^{\text {iv }}$	0.82	2.66	3.253 (4)	131
O7-H7 . $\mathrm{O}^{\text {1 }}{ }^{\text {v }}$	0.82	1.96	2.760 (4)	165
$\mathrm{O} 11-\mathrm{H} 118 \cdots \mathrm{O} 10^{\mathrm{i}}$	0.77 (3)	2.34 (3)	3.061 (5)	157 (6)
$\mathrm{O} 11-\mathrm{H} 11 A \cdots \mathrm{~N} 4^{\text {iii }}$	0.80 (3)	2.05 (3)	2.816 (4)	163 (5)
$\mathrm{O} 12-\mathrm{H} 12 B \cdots \mathrm{O} 10^{\mathrm{i}}$	0.80 (3)	2.21 (3)	2.994 (5)	169 (6)
$\mathrm{O} 12-\mathrm{H} 12 A \cdots \mathrm{O}^{\text {vi }}$	0.80 (3)	1.97 (3)	2.751 (4)	164 (5)
$\mathrm{O} 13-\mathrm{H} 13 A \cdots \mathrm{O} 10^{\text {vii }}$	0.82	2.43	3.174 (5)	152
$\mathrm{O} 13-\mathrm{H} 13 \mathrm{~B} \cdots \mathrm{O}^{\text {viii }}$	0.82	2.12	2.884 (4)	156
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O}$	0.86	1.85	2.695 (4)	165
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{~N} \cdots \mathrm{O} 1^{\text {i }}$	0.86	2.16	2.904 (4)	145
N5-H5N..O13	0.86	2.46	3.266 (4)	156
N5-H5N \cdots O5	0.86	2.61	3.190 (5)	126
$\begin{aligned} & \text { Symmetry codes: } \\ & x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2} ; \\ & -x+\frac{1}{2},-y+\frac{1}{2},-z+1 ; \text { (viii) } \end{aligned}$		$\begin{aligned} & -z+\frac{1}{2} ; \\ & -z+\frac{1}{2} ; \\ & z+\frac{1}{2} . \end{aligned}$	$-x+\frac{1}{2}, y$ $-x,-y$	$\begin{array}{ll} \hline z+\frac{1}{2} ; & \text { (iv) } \\ -z ; & \text { (vii) } \end{array}$

Water H atoms were refined subject to the restraint $\mathrm{O}-\mathrm{H}=$ 0.82 (3) A. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $0.82(\mathrm{O}-\mathrm{H})$, $0.86(\mathrm{~N}-\mathrm{H})$ and $0.93 \AA(\mathrm{C}-\mathrm{H})$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of China (grant No. Y404294) and the ' 151 ' Distinguished Person Foundation of Zhejiang Province.

References

Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Pan, L., Ching, N., Huang, X. \& Li, J. (2001). Chem. Eur. J. 7, 4431-4437.
Pan, L., Frydel, T., Sander, M. B., Huang, X. Y. \& Li, J. (2001). Inorg. Chem. 40, 1271-1276.
Pan, L., Huang, X. Y., Li, J., Wu, Y. G. \& Zheng, N. W. (2000). Angew. Chem. Int. Ed. Engl. 39, 527-530.
Retailleau, L., Vonarb, R., Perrichon, V., Jean, E. \& Bianchi, D. (2004). Energy Fuels, 18, 872-878.
Sheldrick, G. M. (1997). SHELXS97 and SHELX97. University of Göttingen, Germany.
Yu, R., Wang, D., Kumada, N. \& Kinomura, N. (2000). Chem. Mater. 12, 12-16.

