Received 4 October 2005

Accepted 12 October 2005

Online 19 October 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### Xin-Hua Li

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail: lixinhua01@126.com

### **Key indicators**

Single-crystal X-ray study T = 298 KMean  $\sigma(C-C) = 0.006 \text{ Å}$ Disorder in main residue R factor = 0.029 wR factor = 0.060 Data-to-parameter ratio = 10.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# Poly[hexaaquatris( $\mu_3$ -3-carboxypyrazole-5-carboxylato)(3-carboxypyrazole-5-carboxylato- $\kappa O$ )( $\mu_2$ -pyrazole-3,5-dicarboxylato)dicerium(III)]

In the title compound,  $[Ce_2(C_5H_2N_2O_4)(C_5H_3N_2O_4)_4$ - $(H_2O)_6]_n$ , each Ce atom is nine-coordinated by three water molecules, four 3-carboxypyrazole-5-carboxylate monoanions (two pairs of symmetry-related anions), and a pyrazole-3,5dicarboxylate dianion. Two symmetry-related Ce atoms are bridged by a pyrazole-3,5-dicarboxylate dianion, which lies across a twofold rotation axis. There are two independent 3carboxypyrazole-5-carboxylate monoanions which differ in their coordination modes; one is monodentate and the other is tetradentate. The Ce atoms are bridged by both pyrazole-3,5dicarboxylate dianions and 3-carboxypyrazole-5-carboxylate monoanions, generating a three-dimensional network structure.

### Comment

3,5-Pyrazoledicarboxylic acid ( $H_3pdc$ ), is a multifunctional ligand; it has multiple coordination sites that allow structures of higher dimensions and it also has abstractable protons that allow various acidity-dependent coordination modes (Pan *et al.*, 2000). A variety of  $H_3pdc$  coordination compounds have been synthesized and reported in the literature (Pan, Ching *et al.*, 2001; Pan, Frydel *et al.*, 2001). Much of the work has been focused on coordination polymers containing transition metal and post-transition metal elements. Rare-earth metal compounds have seldom been investigated. Owing to their high coordination number and special magnetic (Retailleau *et al.*, 2004) and fluorescence properties, the lanthanide series is likely to provide new materials (Yu *et al.*, 2000) that possess specific properties and desired features. In this paper, we



### Figure 1

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved A segment of the polymeric structure of (I), showing 50% probability displacement ellipsoids. [Symmetry codes: (')  $\frac{1}{2} - x$ ,  $\frac{1}{2} + y$ ,  $\frac{1}{2} - z$ ; ('')  $\frac{1}{2} + x$ ,  $\frac{1}{2} - y$ ,  $\frac{1}{2} + z$ ; (''') -x, y,  $\frac{1}{2} - z$ .]

report the synthesis and structure of a new cerium coordination polymer,  $[Ce_2(C_5H_2N_2O_4)(C_5H_3N_2O_4)_4(H_2O_6)_n, (I).$ 



In (I), each Ce ion is nine-coordinated, with bonds to four  $H_2pdc^-$  anions, an  $Hpdc^{2-}$  dianion and three water molecules. The Hpdc<sup>2-</sup> dianion is coordinated in bidentate fashion, with one O atom of each carboxylate group bound to a Ce and thereby bridging two symmetry-related Ce ions. There are two independent pyrazole-3,5-dicarboxylate anions which differ in their coordination modes; one binds in monodentate mode and the other in tetradentate mode. Therefore, mono- and tetradentate coordination modes of H<sub>2</sub>pdc<sup>-</sup> anions and the bidentate mode of the Hpdc<sup>2-</sup> dianion are included in the title compound, with multi-bridging modes of the carboxylate group (Fig. 1).

From Table 1 we can see that the Ce-O5-C9 angle is nearly linear (ca  $165^{\circ}$ ), which is unusual. It should be noted that atom H5N of the Hpdc<sup>2-</sup> dianion is necessarily disordered over two half-occupied positions, as this ligand lies across a twofold axis. In addition, the displacement parameter for N5 is the largest of any N atom, consistent with slightly different positions when it is C-NH versus C=N. There are also two potential (weak) hydrogen-bonding contacts for N5, one at a distance of 3.180 (2) Å to O5 and the other at a distance of 3.258 (2) Å to O13. The latter is a nearly linear interaction.

There are many weak interactions in this compound, such as  $O-H \cdots O$  and  $N-H \cdots O$  hydrogen bonds (Table 2). Ce ions, water molecules and H<sub>3</sub>pdc ligands interact through coordination bonds and weak interactions, generating a threedimensional framework.

# **Experimental**

The title compound was synthesized by adding an aqueous (10 ml) solution of ammonium ceric nitrate,  $(NH_4)_2Ce(NO_3)_6$  (1.0 g, 2 mmol), to a methanol and ethanol mixed solution (10 ml) of pyrazole-3,5dicarboxylic acid (0.4 g, 2 mmol) and 2,2'-dithiosalicylic acid (0.6 g, 2 mmol) at room temperature. The reaction mixture was filtered; colorless prism-shaped crystals separated from the solution after about three months. The transparent prismatic crystals were collected, washed with distilled water and dried in air.

> 3147 independent reflections 2864 reflections with  $I > 2\sigma(I)$

 $R_{\rm int} = 0.028$  $\theta_{\rm max} = 25.1^{\circ}$  $h = -22 \rightarrow 21$  $k = -15 \rightarrow 14$ 

 $l = -19 \rightarrow 19$ 

#### Crystal data $[Ce_2(C_5H_2N_2O_4) D_x = 2.178 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $(C_5H_3N_2O_4)_4(H_2O_6)$ Cell parameters from 3147 $M_r = 1162.80$ Monoclinic, C2/c reflections a = 19.2347 (16) Å $\theta = 2.0-25.1^{\circ}$ $\mu=2.66~\mathrm{mm}^{-1}$ b = 13.2563 (11) Åc = 16.7559 (15) ÅT = 298 (2) K $\beta = 123.909 (1)^{\circ}$ Prism, colorless V = 3545.8 (5) Å<sup>3</sup> $0.15 \times 0.07 \times 0.07 \text{ mm}$ Z = 4

# Data collection

| Bruker APEX area-detector            |  |
|--------------------------------------|--|
| diffractometer                       |  |
| $\omega$ and $\omega$ scans          |  |
| Absorption correction: multi-scan    |  |
| (SADABS; Bruker, 2002)               |  |
| $T_{\min} = 0.80, \ T_{\max} = 0.82$ |  |
| 0143 measured reflections            |  |

# Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_0^2) + (0.0194P)^2]$                    |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.029$ | + 12.7824P]                                                |
| $wR(F^2) = 0.060$               | where $P = (F_0^2 + 2F_c^2)/3$                             |
| S = 1.05                        | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| 3147 reflections                | $\Delta \rho_{\rm max} = 0.74 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 304 parameters                  | $\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$ |
| H atoms treated by a mixture of |                                                            |

Н independent and constrained refinement

### Table 1 Selected geometric parameters (Å, °).

| Ce1-O2 <sup>i</sup>      | 2.391 (2)   | Ce1-O13                               | 2.560 (3)   |
|--------------------------|-------------|---------------------------------------|-------------|
| Ce1-O5                   | 2.438 (3)   | Ce1-O9                                | 2.641 (3)   |
| Ce1-O12                  | 2.519 (3)   | Ce1-N1                                | 2.642 (3)   |
| Ce1-011                  | 2.550 (3)   | Ce1-O3 <sup>ii</sup>                  | 2.661 (3)   |
| Ce1-O1                   | 2.554 (2)   |                                       |             |
| O2 <sup>i</sup> -Ce1-O5  | 75.96 (9)   | O13-Ce1-O9                            | 64.50 (9)   |
| O2 <sup>i</sup> -Ce1-O12 | 82.05 (12)  | O2 <sup>i</sup> -Ce1-N1               | 144.09 (10) |
| O5-Ce1-O12               | 73.43 (12)  | O5-Ce1-N1                             | 71.64 (9)   |
| O2 <sup>i</sup> -Ce1-O11 | 74.28 (10)  | O12-Ce1-N1                            | 74.32 (11)  |
| O5-Ce1-O11               | 131.65 (11) | O11-Ce1-N1                            | 117.54 (10) |
| O12-Ce1-O11              | 65.45 (11)  | O1-Ce1-N1                             | 61.59 (8)   |
| O2 <sup>i</sup> -Ce1-O1  | 145.08 (9)  | O13-Ce1-N1                            | 115.30 (10) |
| O5-Ce1-O1                | 132.87 (9)  | O9-Ce1-N1                             | 72.68 (9)   |
| O12-Ce1-O1               | 88.24 (11)  | O2 <sup>i</sup> -Ce1-O3 <sup>ii</sup> | 85.69 (9)   |
| O11-Ce1-O1               | 71.18 (9)   | O5-Ce1-O3 <sup>ii</sup>               | 148.06 (10) |
| O2 <sup>i</sup> -Ce1-O13 | 69.02 (10)  | O12-Ce1-O3 <sup>ii</sup>              | 130.13 (10) |
| O5-Ce1-O13               | 74.54 (11)  | O11-Ce1-O3 <sup>ii</sup>              | 64.69 (10)  |
| O12-Ce1-O13              | 141.00 (12) | O1-Ce1-O3 <sup>ii</sup>               | 75.20 (8)   |
| O11-Ce1-O13              | 126.26 (10) | O13-Ce1-O3 <sup>ii</sup>              | 74.55 (9)   |
| O1-Ce1-O13               | 130.29 (9)  | O9-Ce1-O3 <sup>ii</sup>               | 69.05 (8)   |
| O2 <sup>i</sup> -Ce1-O9  | 131.31 (9)  | N1-Ce1-O3 <sup>ii</sup>               | 130.22 (9)  |
| O5-Ce1-O9                | 104.10 (10) | C4-O1-Ce1                             | 124.0 (2)   |
| O12-Ce1-O9               | 145.77 (11) | C4-O2-Ce1 <sup>iii</sup>              | 158.9 (3)   |
| O11-Ce1-O9               | 124.17 (9)  | C5-O3-Ce1 <sup>iv</sup>               | 133.5 (2)   |
| O1-Ce1-O9                | 68.22 (9)   | C9-O5-Ce1                             | 164.4 (3)   |
|                          |             |                                       |             |

Symmetry codes: (i)  $-x + \frac{1}{2}$ ,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (ii)  $x + \frac{1}{2}$ ,  $-y + \frac{1}{2}$ ,  $z + \frac{1}{2}$ ; (iii)  $-x + \frac{1}{2}$ ,  $y - \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (iv)  $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$ 

Table 2Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                | D-H                                                                                | $H \cdot \cdot \cdot A$                                 | $D \cdots A$                                       | $D - H \cdots A$                         |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|------------------------------------------|
| O4-H4···O9 <sup>iv</sup>                                                        | 0.82                                                                               | 1.70                                                    | 2.515 (4)                                          | 172                                      |
| $O4-H4$ ··· $O10^{iv}$                                                          | 0.82                                                                               | 2.66                                                    | 3.253 (4)                                          | 131                                      |
| $O7-H7$ ··· $O10^{v}$                                                           | 0.82                                                                               | 1.96                                                    | 2.760 (4)                                          | 165                                      |
| $O11 - H11B \cdot \cdot \cdot O10^{i}$                                          | 0.77 (3)                                                                           | 2.34 (3)                                                | 3.061 (5)                                          | 157 (6)                                  |
| $O11-H11A\cdots N4^{iii}$                                                       | 0.80 (3)                                                                           | 2.05 (3)                                                | 2.816 (4)                                          | 163 (5)                                  |
| $O12-H12B\cdots O10^{i}$                                                        | 0.80 (3)                                                                           | 2.21 (3)                                                | 2.994 (5)                                          | 169 (6)                                  |
| $O12-H12A\cdots O6^{vi}$                                                        | 0.80(3)                                                                            | 1.97 (3)                                                | 2.751 (4)                                          | 164 (5)                                  |
| $O13-H13A\cdots O10^{vii}$                                                      | 0.82                                                                               | 2.43                                                    | 3.174 (5)                                          | 152                                      |
| $O13-H13B\cdots O8^{viii}$                                                      | 0.82                                                                               | 2.12                                                    | 2.884 (4)                                          | 156                                      |
| $N2-H2N\cdots O6$                                                               | 0.86                                                                               | 1.85                                                    | 2.695 (4)                                          | 165                                      |
| $N3-H3N \cdot \cdot \cdot O1^{i}$                                               | 0.86                                                                               | 2.16                                                    | 2.904 (4)                                          | 145                                      |
| N5−H5N···O13                                                                    | 0.86                                                                               | 2.46                                                    | 3.266 (4)                                          | 156                                      |
| $N5-H5N\cdots O5$                                                               | 0.86                                                                               | 2.61                                                    | 3.190 (5)                                          | 126                                      |
| Symmetry codes: (i)<br>$x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2};$ (v | $ \begin{array}{c} -x + \frac{1}{2}, y + \frac{1}{2} \\  y -x, y + 1 \end{array} $ | $, -z + \frac{1}{2};$ (iii)<br>$, -z + \frac{1}{2};$ (v | i) $-x + \frac{1}{2}, y - \frac{1}{2}$<br>-x, -y + | $-z + \frac{1}{2};$ (iv)<br>1, -z; (vii) |

 $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1;$  (viii)  $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}.$ 

Water H atoms were refined subject to the restraint O-H = 0.82 (3) Å. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.82 (O-H), 0.86 (N-H) and 0.93 Å (C-H), with  $U_{iso}(H) = 1.2U_{eq}$  (parent atom).

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve

structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

We acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of China (grant No. Y404294) and the '151' Distinguished Person Foundation of Zhejiang Province.

### References

- Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Pan, L., Ching, N., Huang, X. & Li, J. (2001). Chem. Eur. J. 7, 4431-4437.
- Pan, L., Frydel, T., Sander, M. B., Huang, X. Y. & Li, J. (2001). *Inorg. Chem.* 40, 1271–1276.
- Pan, L., Huang, X. Y., Li, J., Wu, Y. G. & Zheng, N. W. (2000). Angew. Chem. Int. Ed. Engl. 39, 527–530.
- Retailleau, L., Vonarb, R., Perrichon, V., Jean, E. & Bianchi, D. (2004). *Energy Fuels*, **18**, 872–878.
- Sheldrick, G. M. (1997). SHELXS97 and SHELX97. University of Göttingen, Germany.
- Yu, R., Wang, D., Kumada, N. & Kinomura, N. (2000). Chem. Mater. 12, 12-16.